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Nonequilibrium Potentials Near Instabilities 
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The existence of polynomial approximations for nonequilibrium potentials 
determined by a master equation near an instability of arbitrary codimension 
with diagonalizable linear part is studied. It is shown that the approximations 
exist, provided some relations are satisfied between the coefficients of the master 
equation. 
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1. I N T R O D U C T I O N  

The practical determination of a nonequilibrium potential associated with 
a Markov process has received considerable attention recently. In the case 
of diffusion processes obeying a Fokker Planck equation, Graham 
and collaborators have shown that the potential is generically non- 
differentiable. (1) It has, however, been shown by these authors that in the 
neighborhood of codimension-one instabilities the potential admit a poly- 
nomial approximation and that this also holds in the neighborhood of 
codimension-two bifurcations with diagonalizable linear part for a special 
choice of noise sources. (2) In fact, in this last reference a much more general 
result is obtained, since near codimension-two bifurcations smooth non- 
polynomial potentials are explicitly constructed which reduce to polyno- 
mial form in special cases. The problem of polynomial expansions has also 
been considered recently in ref. 16 for two-variable systems and in the case 
of Markov processes obeying a canonical master equation it has been 
studied by Lemarchand and Nicolis. (3) In particular, Lemarchand and 
collaborators (4'~2) have recovered the polynomial expansions of Graham 
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for the codimension-two instabilities (s and (~2) provided that a 
relation is valid between some coefficients of the master equation, a condi- 
tion which is equivalent to the special choice of noise sources in ref. 2. We 
shall study here the general problem of the conditions that the coefficients 
of the master equation must satisfy in order that the potential admits, near 
an arbitrary instability with diagonalizable linear part, an approximation 
with polynomial dependence in the gross variables and in the unfolding 
parameters. 

Our starting point is a master equation involving a small expansion 
parameter t /=f2  -1 in canonical form in the sense of van Kampen3 s) This 
means that if Q = (QI, Q2,..., QN) a r e  the gross variables, the transition 
probability is of the form (q. = f2 lQu, r .  = Qu - Q'., f ( f2)  a given func- 
tion) 

W(QIQ')=f(s ~ tl~w~(q, r) (1) 
~>~0 

and then after a scaling of time t' = t / f  (f2) t the master equation takes the 
form (~?. = O/Oq.) 

q ~ t P ( q t ) = ~ o  ~r ( -tl 

xw~(q,r) p(q,t) (2) 

which can be written as 

~I -~ P(q, t) = ~ q~L~(q, r/V) p(q, t) (3) 
~>~0 

with 

L~(q, t/V) = ~ t/"0.~--. O.A~ l ~ " ( q )  (4) 
n~>l 

Following Kubo etal., (61 we can associate a problem of classical 
mechanics with this master equation defining the Hamiltonian 

H(q,p)=Lo(q, t iV=-p)= ~ (-1)npul...p.A"l~"(q) (5) 
n~>l 

In the Fokker-Planck case t/ measures the intensity of the noise sources 
and here of we call f2 the volume (which is often the case), it represents the 
inverse volume. We shall be interested in the limit t/--* 0, for which a WKB- 
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type expansion can be set up, which gives the transition probability density 
in the form ~7) 

P(q, t l q0, to) = PWKB(q, t l qo, to)(Io + ~ rl~I~) 
n ) l  

(6) 

where 

PWKB(q't]qo'to)=exp[ - 1-A(q'tlqo'to)]tl (7) 

with A(q, t lqo, to) the classical action for the specified boundary conditions 
calculated with the Hamiltonian (5). Using functional integral techniques, 
one can give explicit formulas for all the corrections Ij in (6) in terms of 
the solution of the mechanical problem defined by (5). (7,s) The form (7) 
shows that we can write a WKB approximation P~KB(q) ~ 
exp[--(1/t/) ~b(q)] for the stationary probability, where q~(q) is called the 
potential, which satisfies then the Hamilton-Jacobi equation H(q, V~b)= O. 
Putting 

H,~...~~ = n! ( - 1 )  n A~l ~(q)  

we remark that in the limit r / ~  0 the master equation would reduce to a 
deterministic one and the deterministic macroscopic equations would be 
Oa=Ha(q)" We shall speak of a bifurcation here when the vector field 
Ha(q) [we assume H~(0)=0,  i.e., q = 0  is an equilibrium] becomes 
singular, i.e., its linear part has eigenvalues with vanishing real part. We 
treat an instability with diagonalizable linear part and such that the equi- 
librium q = 0 is persistent in a neighborhood of the critical point (the point 
where q = 0  loses its stability) in the space of parameters. Then, if we 
assume that by a nonlinear change of variables, H~(q) has been put in 
normal form, 0) its linear part will be diagonal and at the critical point for 
the (m~)(g'21 -...Op) instability it will have eigenvalues {a~, 1 ~< ~ ~< N}, 
where a a = 0 ,  1 ~<a~<m; O'm+2j_ 1 = ig2j, am+2j= --i(2j, 1 <~j<~p; an+~=7=, 
1 ~< ~ ~< N - -  n, Re ~ < 0; and n = m + 2p is the dimension of the critical 
space. It can be shown that the stable variables corresponding to the 
eigenvalues {7~} can be eliminated from the problem (for the Fokker-  
Planck case see ref. 10; the result is the same for the master equation). 
Finally, we have to solve a Hamilton-Jacobi equation H(ql ..... q,, 
C~l~b,..., c~b)= 0 in the critical variables. Putting 

H(q,p)=~,  (r!) ' H~,...#r(q) p~l.. .p~ r 
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the vector field {H,(q~ . . . . .  qm, zl,  21 ..... zp, ~p), 1 ~<kt~<n} (here 
qm+2j l=Zj ,  qm+2j=Zj, l<~j<~p, and 2j is the complex conjugate of z~) 
has the following normal form in the unfolding of the singularity(9): 

H~(q)=#~q~+F~(ql  ..... q,,,, Izl[ 2 ..... Izpl2), l~<c~<m (8a) 

Hm+2~ l(q)=(gm+=+ig2~)z=+z~G~(ql,  ..., qm, IZ~I 2 ..... IZpl 2) (8b) 

where 1 ~<e~<p, and Hm+2=(q ) is the complex conjugate of (8b). In (8), 
{/~=, l~<e~<m+p}  are the unfolding parameters (the instability is of 
codimension m + p ) ,  the critical point is { /~=0 ,  1 <~c~<~m+p}, and we 
have assumed that the frequencies {O=, l~<a~<p} are nonresonant. We 
remark here that we have introduced in the standard way complex 
variables to write the normal form of H~,(q). Originally the master equation 
is real and if the real critical variables are (q'l ..... q',), one has to solve a 
Hamitton-Jacobi equation H'(q', V'~b)= O. One puts qj= q}, 1 <~j<~ m, and 

r �9 t t �9 / 

q m + 2 k - - I  = Zk  q m + 2 k - - l ~ - l q m + 2 k '  q m + 2 k  Zk  = = = q m + 2 k  1 - - l q m + 2 k ,  

l<~k<<.p, and this gives the normal form (8) corresponding to the 
Hamiltonian H(q, Vff) = H'(q', V'q~). The matrix 

0 2 H ' ( q ~  

Q'~ - 0(0"0) 0(0p(~) q'=O 

must be positive definite and this implies restrictions on the matrix 

02H(q, V~b) q=O 
Q~  - 0(0~b) 0(0a~,b) 

2. S O L U T I O N  OF T H E  H A M I L T O N - J A C O B I  E Q U A T I O N  

In order to solve H(q,V~b)=O, we put ~b=Zr~>z~b Er?, where qIErl(q) 
is of polynomial order r in (ql "'" qn) and develop H(q, V~b) = 0 in powers 
of q. The notation (...)Er2 stands for the terms in (--.) which are of order r 
in q. We put 

H.(q) = L B.vqv + O(q2), 
v--1 

Q,~ = Hi, v( q = O) 

The sum for ~b starts with ~[2] since q = 0 is an extremum of the potential 
~b and one must impose V~b=O thereJ u Our set of equations is then 
H(q, V~b)rr2 = O, r~>2. 
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One has 
1 

H(q, Vr Er]= ~ ~ ~ Hmm...~,,(q) [j~ (Out,b) [j'] 
s>~l Jo is  

x ... (a~s~b)[Js] (9) 

with jo~>O, jk~> 1 for k~> 1, ~ = o j k = r .  
Putting ~bEzl=~ ~,~=~ Au~q~qv, one obtains from (9) for r = 2  the 

equation (B r is the transposed matrix of B) 

AB+BrA+AQA=O (10) 

_l_~m+P The diagonal matrix is given by B = A _ ~ j =  ~ ~gB (j), with 

P 

A~= ~ iQj(6u, m+2j_16v, m+2j_l--O,,,m+2j6~,m+2j ) ( l l a )  
j = l  

B ~J) - b u.jb~j 1 <. j ~ m (12a) 

(re+k)_ _13~m +3um+ZkOvm + l<<.k<~p (12b) Ojuv - -~p,m+2k , + 2 k  1 , , 2k~ 

It is simple to see that (10) implies that A vanishes when # s ~ 0 ,  and 
moreover that it has the expansion 

m+p 
A = ~ kgA (j) + O(#k/~t) if Q,j = Qi~3 U 

j - - 1  

(i ~< m, j ~ m). This condition is the first relation we need on the coefficients 
of the master equation in order to have a polynomial dependence in the 
unfolding parameters for the potential. We assume that it is satisfied from 
now on and we shall come back to its interpretation at the end of this 
section. Then we have 

2 
A~v(J)-- -Qjj--6~ jbv l <~j<<.m (13a) 

2 
( m + k )  = -  ( 6 u ,  m + 2k  16v, m+2k A~v Qm+ 2k- l,m +2k 

-Ff#,rn+2kfv,  m+2k 1 ) ,  l<~k<<.p (13b) 

We remark that Qjj, 1 ~< j ~< m, and Q m + 2k - 1,m + 2k, 1 ~< k ~< p, are real 
and positive. One obtains from (9) for r ~> 3 equations of the form 

L~bEr3=I Er3, L= ~ L,vqv--O (14) 
, .v= l ~q;. 
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with L = B +  QA and where I [r] depends only on {r s <  r}. We see then 
that we can try to solve (14) by recursion in r. But we are interested in 
obtaining solutions of (14) with polynomial dependence on the unfolding 
parameters {Ps, 1 <<. j <~ m + p }. We put then 

m+p 
~[r]  = ~o[r] _~ E ~lJO [r] + O(#j]Ak) 

j = l  
m+p 

I[~] = Io [r] + ~ #~If ~] + O(#jPk) 
j = l  

One also has L = L (~ + 52~_+1 p/~jL (j) + O(#s#g) , with 

~ m  + p ]..lff~)(j) L (~ = A, L (jl = B (j) + QA (Y), 1 ~ j <<. m + p, and ~o = ~ (o) + ~ :  = 1 

with /(Y) defined as in (14) with L replaced by L (s). Putting D = L  (~ we (o) 
obtain for the {~b~ r], 0 ~<j~< m + p} the equations 

D~)[o r] = I[o r] (15a) 

DO [ r ] =  -L(J)r I [r]=-s[r]  , l <~j<<.m+ p (15b) 

We have to solve these equations starting with (15a) at each step of the 
recursion in r (note that If rl depends only on ~b E'1, s < r). Using ( l la) ,  one 
obtains 

D = iQj zj - ~s 
j = l  

From (12) and (13) one gets 

(16) 

O)-  ~ (1 -6uj),  l < ~ j 4 m  L ~  - -c~.jfvs - 2firs 

L(~ m+j)= -6 , ,m+v  l(~v,m+2j-l--(}u,m+2j(~v,m+2j 

Qp, m+2j (1 -- ~#,m+2j-- 1) 
--2cSv'm+2j-a Qm+2j 1,m+2j 

Q. , , .+2 j  1 ( 1 - a . , m + 2 1 ) ,  -26v'm+2J Qm+2j 1,m+2j 

and the l (j) are of the form 

(17a) 

l <~j<~p (17b) 

L(J)=qj - - ~ q j +  ~ Luj Oq. ' 1<~ m (18a)  
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~ l(m+J) ~u) 
~,u,m + 2, j -  1 0 

L (mW J) = zj (~Zj Jr- 2 
# # r n + 2 j -  1 

( ~t:z.j "(m+J) ~ ) ~-ZJ  - -  ~"~ -[" 2 ~ # , m + 2 j  1 <.j<~p (18b) 
ttv~rn+2j 

Before solving Eqs. (15), we need some preliminaries. Let ~ be the 
space of formal power series in (ql, q2,.-., qn) and 3/f ('~ the subspace of Yf 
of polynomials of degree r in (ql,..., q,). The operators L, D, and L ~J) act 
on ~(f and leave Yt ~ )  invariant for all r and in general if an operator R 
acting in Yf leaves the spaces ~r invariant, we shall write R[ ~ ( r )  for the 
restriction of R to W (~). We define now a suitable scalar product ( - , . )  
(antilinear in the first argument and linear in the second) in J f  which is 
such that the monomials 

mj ! rnl m2 . met q~ q2 . .q ,  , mj entire numbers 
J 

form an orthonormal basis (1~) (see also ref. 9). With this scalar product the 
adjoint of the operator qj (multiplication by qj) is simply O/?qj, i.e., 
q+ = O/~qj, and consequently O + = - D .  Then Ker O = { f ~  ~'~: D f =  0} = 
K e r D  + and it is easy to see that it is the space of functions F(q~ ..... qm, 
IZ~[ 2 ..... [Zp[2), which can be developed in formal power series in their 
arguments (ql,-.-, qm, [Zl[ 2 ..... [Zp[2) �9 

We come back now to the solutions of (15) which are equations in 
yf(r). In order to solve (15a) for ~bo E~l, one must impose that lo E~ is 
orthogonal to Ker D + [ '~(~)= Ker D ['Jf(~) (Fredholm alternative) and 
this imposes relations between the coefficients of the {~b0 Esl, s < r} and of the 
master equation. Once this solvability condition IoE~• + rYf (r) is 
satisfied, we can solve (15a) in  the form ~b0 E~1 = ;~o Erl + if0 Erl, where ;~0 trl is a 
particular solution of (15a) and r [~1 E Ker D is of the form 

~[o r2 = ~, a ~') "''Jm+pq~ ~'''qjm m Izl t  2jm§ . .  IzpI =Jm+, (19) 0, .il 
jk~>o 

with S m i=l j i+2Y~P=ljm+i=r and the ~a ~rl } are arbitrary coef- ( 0, j l  ""Jm+p 
ficients. One has the form (19), since the monomials 

{q~' . . ' q ~  ,z1127m+~ ... [Zp, 2J~+~, ~ j k + 2  ~ Jm+k=r} (20) 
k = l  k = l  

which we call the resonant terms, form a basis of the space Ker D r3ef l~/. 
We remark that D is closely related to the homological operator A = D - A 
associated to the instability (see ref. 9. We replace now ~bo Erl in (15b) and 

822/57/5-6-3 
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we must impose J~r] _1_ KerD + ro,~f (r~, l<<.j<~m+p. This gives a set of 
relations linear in the ~'a (r) ~ which overdetermines them in the sense ( O, Jl . . .Jm+p.~ 
that one has more relations than coefficients and this leads again to 
relations among the coefficients of the master equation. This general 
mechanism of solvability conditions via the Fredholm alternative is then 
what produces the relations found in refs. 2, 4, and 12, which are then a 
consequence of imposing a polynomial expansion in (q~... q,) and in the 
unfolding parameters (/~ --- Pm + p)- 

We shall obtain now explicitly the first nontrivial order from (15). Let 
the entire number r'~> 3 be such that the first nonlinearity in the normal 
form of the vector field H~,(q) arrives at s = r' - 1, i.e., one has 

Hv(q)=Hu(q) [1]  + ~ H.(q) ['] 
s>~r'--  I 

In the generic case r ' =  3 unless there is a symmetry in the problem. For 
example, the symmetry qj--+ -q i ,  1 -G< j ~< m, implies r ' =  4 and also guaran- 
tees the persistence of the equilibrium at the origin q = 0, which we are 
assuming here. It is easy to check from the expansion (9) that ffo*l= 0 for 
s < r '  and this will imply, as we shall see, IyS] =0 ,  1 <~j<~m+p,  for s < r ' .  
We suppose r' > 3; then Eqs. (15) for r = 3 are 

D~lo 31 = 0  (21a) 

= j j31 l < ~ j < ~ m + p  (21b) D~b} 31 -L(J)r , 

since i~3] = 0  also. From (21a) we obtain r E3] e Ker D r ~  (3), i.e., it is of 
the form [see (19)] 

~013] = 2 --(3) Jl Jm 2jm i l " a0;j, j,,+,ql " ' 'qm IZl[ "'" IZpl 2jm+' (22) 

We replace r [3] in (21b); then the solvability 
J~3]•  D+ pit ~(3) gives, Va and 1 <~j<~m+p,  

(g~3), L (J)r > = (L  (j)+p(3)o~,, r > = 0 

condition 

(23) 

The set {g~r]} isthe basis of Ker D raft (r) formed by the monomials in (20). 
From (18) we have 

L (j)+= - q j +  ~ L , j q ,  ~qj 
a # j  

= --qj-~qj+B~ j), 1 <<.j<~rn (24a) 
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LU.+J)+ ( - z  j+ ~ V(m+J) ) ~ 
= ~ . , m  + 2 j -  i q~, ~.. 

/ , ~ m + 2 j  1 

r ~ + ~  . "~ ~ 
# @ m + 2 j  

(24b) 

We can write/ .(k)+ = B~o k) + B]~), with 

B~o ~) = - q k  c3q~' 1 ~< k ~< m 

The form of B~ k~ shows that  ~e(k)"(r)~ is or thogonat  to Ker  D p~(r) ,  while 
for 

g = q J l . . .  q J,,, I z ,  12 j ' '+ '  �9 �9 �9 t z . !  2u., +,, 

one has 

B~ok)g = --Jkg, l ~ k ~ m ;  B~om+k)g = --2j,,,+kg, l ~ k ~ p  (25) 

Since ~boE31 ~ Ker  D, one obtains from (23) and (25) that \6~/~ 7"0"~[3]\ = O , /  
which implies that  all ,(3) in (22) vanish and ~b0{31 = 0. In the same ~0;]1 ""Jm+p 

way we shall have ~boE~l = O, s < r'. For  r = r' one has IoE~'2 = 0 and I~ ~'~ is 
given by 

2 if,'2 Hk(q)E"'-~qk, 1 <<.k 4 m  (26a) 
k Qkk 

2 
iEr'] [Hm+2k_~(q) E'' ~]Zk + C.C.-], 14k<~p (26b) 

m + k  - -  Qm+2k- l,m+2k 

Due to (8), we see that I~ r'2 will contain only resonant  terms. Since 
Io Er'l = 0 ,  we obtain from (15a) 

- " '  Jl , . ,  ~o;A ...j,,,+pql ""q,,, ]zl[ 2j'~+~ "'" zp 2>.+~ (27) 

The solvability condit ions of (15b) will be (1 ~< k ~< m + p)  

( L~k)+ ~ , ~o["'1 } = \-o/nU':)~ ~b0[,"J } = (gf) ,  I~r'l } (28) 
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where {g~')} is the basis in (20). Since I~ ~'l contain only resonant terms, 
i.e., rEr'3 = Ker D I Jr ~(~'), we can write 

I~'3 = ~  be ~') j, J~ Iz,12J~+,. ~J~+~ k;.ll""Jm+pql " " q m  .. [Zp[ (29) 

If 

g(r ' )  = qJll . Jm ' 

" " q m  Izll 2 ~ + ' ' ' '  IZ~I 2~m+' 

one obtains from (28) that 

; ,~(r') __ b(r') 
- - J k ~ O ; j l  " " ] m + p  - -  k ; j l  " " J m + p '  

__ ~ ;  ~ ( r ' )  = ]3(r') 
~ J m + k V t O ; J !  " " J m + p  ~ m q - k ; J l ' " J m + k ~  

1 ~< k ~< m (30a) 

l <<.k <~ p (30b) 

I f j k = 0  in (30a) [respectively, i f j m + k = 0  in (30b)] b (r') = 0 ,  since k; j l  " " Jm+ p 

from (26a), l([ ') necessarily contains qk as a factor [respectively 
b<m~')+~;j,, j :+e=0,  since from (26b) 1(~ ~') necessarily contains Izkl 2 as a 
factor], a n d  Eqs. (30) are identically satisfied. Let us consider now a 
definite coefficient "0;a(r')jl " " " Jm" + p of (27) which we want to determine and let 
{ia,i= ..... iq}, with 1 ~ i ~ < i = <  . . .  < i q < ~ m + p ,  be the subset of 
{ 1 , 2 , . . . , m + p } s u c h t h a t j i ~ # O , l = l ,  2 ..... q. Then ao;j~ ~') �9 J,,+r will appear in 
the left-hand side of (30) in the q equations 

__;,,~r) --~,~r'). i ; l =  1, 2,..., q (31) 
J i l ~ O ; j l . . . J m + p - - U J i l  , J l ~ " ' ~ J m + p ,  

where j ' i ,=j i , ,  iz<~m, and j'i,= 2 j i l ,  i i>  m. This gives the q -  1 relations 

1 1 
b(r'). - bU) l = 2, 3,..., q (32) 

i /  Jil;Jl  " " J m + p  i (  Jq;Jl  " " J m + p '  
a i 1 J 11 

between the coefficients of I([ '), and if they are satisfied we can determine 
ar .j~+p. Repeating the same procedure, we can determine all the coef- 
ficienis of ~bo Er'l, provided a set of relations of the type (32) are satisfied. We 
can now give the final result ~b=~br23+Cbo Er'J for the potential up to this 
order using (13) for the matrix A. One has 

n p y, ~', l 'm+j ~b = - j = ,  ~ q f -  2 ~. ]zj] 2 
j = l  a m + 2 j - l , m + 2 j  

-4- X~ 8 (r') Jl J,~ o;j, .j~+pql " ' ' qm  Izll 2jm+~ "'" IZpl 2jm+p 

+ O(q~ + 1, t~jq~) (33) 
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In order to get a better understanding of the origin of relations (32), 
we shall give a second method to solve Eqs. (14) which is a direct 
generalization of the formalism developed by Lemarchand. (~3) From (10) 
we obtain L = A - ~ ( - B  T) A, where B is a diagonal matrix in the critical 
space of dimension n with basis vectors 

{el = (1, 0,..., 0),..., e , =  (0 ..... 0,1)} 

i.e., Be j=s je j  with s j = # j .  One has l<~j<~m, and s~+2k l=#m+k+i~'2k, 
Sm+2k=l~m+k--if2k, l<<.k<~p. Putting O = A  -~, we see that the vectors 
{0ej, 1 <~j<~n} are eigenvectors of L with eigenvalues ( - s j ) .  Then any 
matrix C with columns proportional to the components 0jk of the vectors 
0ek will diagonalize L. We take for C the matrix 

2#k 
Cjk= Q~kOJk, l<~j<~n, l<~k<~m (34a) 

2~m + k 
= - 0 i m + 2  ~, 1 < ~ k < ~ p  

Cj'm+2k-[ Qm+2k-l,m+2k " 

212m + k 
Cj, m + 2 k = - - Q m + 2  k 1,m+2kOj, m+2k_l, l<~k<~p 

(34b) 

and from (10) we see that 0jk = -Qj~/(sj  + sk). 
One has (C 1LC)jk=rj6jk , with r j=  --#j; 1 ~ j ~ m ;  and 

rm + 2k ~ = -l~m + ~ + if2k, rm + 2~ = -I~m + k - if2k, 1 <~ k <~ p. We perform in 
(14) the change of variables qj = ~27,= 1 CjkQk; then, putting 

~l,l(Q) = ~b E,3(q), TEd(Q) = i{,3(q) 

we find that Eq. (14) becomes 

L~I-r](Q) =-r=~l rjQj ~ ~{~l(Q)= 7Er1(Q) (35) 

One has C = D + O(#j), with 

2#k Qjk 
Dj~ = Qkk #j + ~k, 1 <~j,k<~m (36) 

and 

Dj~ = 6jk if either j ~ m or k ~> m 
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The change of variables is then of the form 

q j = Q j +  ~ Qik Qk+O(l~kQz) ,  

k # j  

q , , + k = Q m + k  + o ( p j Q l ) ,  

Putting 

~E~3(Q) = ~  ~ l !  r )  " Jn 
:I...j. QJll . . . Qn 

Jk 

l<k~2p  

7Er3(Q) = ~- ~(r) " :. ~ Jk = r  b : l .  . j , Q ~ t . . .  Q , ,  Jk >~ O, 
J k  k = l  

we obtain from (35) 

~l!r) . ~ -  " ~ ( r )  / ~ n  r i J i  
J l  "" "Jn  ~ J l  "" " j r / Z . . i =  1 

p 

r i J i=  - # i J i - -  ~ t,u,,,+k(J,,~+2k-x+J,,,+2k) 
i = 1  k = l  

+i(2k(Jm+e/,--Jm+2g 1)1 

1 ~ j ~ m  (37a) 

one has 

i 
i = 1  

(37b) 

(38) 

P 

j i#~+2 Z # m + k J m +  k = O  (40) 
i = l  k = l  

where {j;} are entire numbers positive or zero and Z T = l j i + 2  
Z~= l j ,~+ g= r> ~3  Efrom (38) this holds whenever ~!rl . :~01 We can 

J1  " " " J n  - -  J "  

elimine these singularities, imposing in (38) that when Jm + 2k - 1 = Jm + 2k one 
must have 

It) " Z r i j ,  
J l  " ' "  Jn  

with g!r) . nonsingular in the limit ~tj ~ 0 and these relations can be seen 
J l  " " " J n  

to be equivalent to the set of relations (32) previously found. We shall 

which are the elements of Ker D. We see then that in the variables {Q:} 
the potential will be singular in the space of parameters in all lines 

Q~I . . .  Qm m . IQm+ 112jm+l ' ' '  tQm+ 2p-,I 2j~+' 

which vanishes in the limit/zj ~ 0 when j,~ + 2k = Jm + 2g- 1, i.e., just for the 
resonant terms 

(39) 
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come back to this point in our discussion of some illustrative examples in 
the next section. We remark that if m > 1, one also has singularities of the 
potential in all lines pj + #k = 0, j~< m, k ~< m [see (35)] due to the change 
of variables. These singularities are eliminated if we impose Qij= Qii6u, 
i<~m, j<~m [-see after Eq. (12b), where these relations were also found] 
and these conditions are the first we have to impose on the coefficient of 
the master equation in order to have a polynomial approximation for the 
potential. If they are satisfied, then (37) shows that the change of variables 
reduces to qj= Q j+  O(#kQt), the resonant terms are the same in both sets 
of variables, and ~b[r](q)= ~t~](Q = q) at lowest order in the {Itj}. 

3. SOME ILLUSTRATIVE EXAMPLES 

Codimension-one instabilities are simple to treat and no relations are 
needed to have a polynomial approximation (2'3) to the potential. We shall 
give here the results for the instabilities (r (O102) , of codimension two, 
and (~f21 O2), (2r163 of codimension three. 

(a) The (~f2) instability has one eigenvalue zero associated with a 
variable q~ and a pair of pure imaginary complex conjugate eigenvalues 
_.is associated with the complex variable z (q2=z,  q3=Z). With the 
symmetry qi --+ -q~ the normal form of H~,(q) is 

Hi(q)  = kt~ ql q- bl q~ + b2ql [z[ 2 (41a) 

H2(q) = (#2 + i(2) z + z(c 1 q~ + c2 Izl 2) (41b) 

and H3(q)= H2(q). The coefficients (bl, b 2 )  a r e  real and (cl, c2) complex. 
It has codimension two with unfolding parameters /~l and #2- From (33) 
we obtain (here r ' =  4) 

~b= - f - -L  2 2 ]A2 [Z[ 2A'-m(4) n4 
Qll q l -  Q23 --o;4o~1 

~(4) .12 2 (4) +~o;21~1 Izl +ao;o2 tzl 4 (42) 

with (Re stands for real part) 

a(4) bl 
0;40 = 2Qll 

a (4 )  _ b2 2 Re c 1 
0;21 QI1 Q23 

a(4)  Re c2 
0;02 = Q23 

(43) 
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We see that one relation is needed in this case due to the double 
determination of ,,(4) in (43); it is Q23b2 = 2QH Re Cl. ~0;21 

Using the second method, we obtain from formula (38) that 
(4) (4) /~(4) ,7(4) and 
400 = a o ; 4 0 ,  ~022  ~ ~ 0 ; 0 2 ,  

(4) #~(b2/Qll) + 2#2(Re c,)/Q23 (44) 
211 ~ - -  

# 1  + # 2  

We see then that if the relation O2362=201t Re Cl is satisfied, the 
numerator in (42) is proportional to (#~ + #2) and one obtains a(a~ ,(4) ~211 ~ ~ 0 ; 2 1 ,  

in agreement with our general discussion after Eq. (40). As we explained 
there, this is the general mechanism at the origin of the relations needed to 
have polynomial expansions. 

(b) The (~2~2) instability has two pairs of complex conjugate pure 
imaginary eigenvalues _+i~ and ___i~2 related, respectively, to the 
variables q,=zt, q 2 2 2 1 ,  q a = Z 2 ,  q 4 = z 2  . It has codimension 2 with 
unfolding parameters (#1, #2). The normal form of Hu(q) is 

Hi(q) = (#1 +it'21)zl +zl(d~ Iz112§ Iz2l 2) (45a) 

H3(q) = (#2 + i(22) z2 + z2(e1 I2112 + e2 Iz2l 2) (45b) 

with H2(q) = Hi(q) , H4(q) = H3(q) , and where 
(dl, d2, el, e2) are complex. From (33) we obtain (r' = 4) 

with 

the coefficients 

~ b = - 2  #1 1z112_2 #2 1z212~_#4) izll4 
023 034 -- ~0;20 

_{_ r e ( a ) i z l l  2 ,7(4) 4 ~0;tl IZ212+ tZ21 ~0;02  (46) 

Re dl a ( 4 )  _ 
0;20 Q 1 2  

Re el #4) - 2  Re d2 = - 2  - -  (47) 
~o;u = Q12 Q34 

a ( 4 )  _ Re e2 
0;02 0 3 4  

We need one relation here due to the double determination of Uo, n-(4) and it 
is Q12 Re f =  Q34 Re d. With the second method we obtain from (38) that 

~(4 )  ~(4)  ,~(4) __ ,,7(4) 
2200 = u 0 ; 2 0 '  ~0022 - -  ~0 ;02  

a(4) - 2  #t(Re d2)/Q12 + #2(Re et)/Q34 (48) 
1 t l l  : 

# 1  "4- # 2  

which reduces to ~o;H"(4) when the condition Q12 Re e~ = Q34 Re d 2 is satisfied. 
This corroborates what we said in the previous example. 
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In the next examples we only give the results of the first method. 

(c) The (r instability has one eigenvalue zero associated with 
a variable q~, and two pairs of pure imaginary complex conjugate eigen- 
values _+il2~ associated with ( q z = z l ,  q 3 = z 1 )  and +i~2 associated with 
(q4 =z2, q5 =22). With the symmetry q~ ~ -q~ the normal form of H,(q) 
is 

H i ( q )  = / 2 1 q l  + dlq~ + elql Izx] 2 q - f l  q l  IZ2[ 2 (49a) 

H2(q)=(p2+i~21)z~+z~(d2q~+e2 Izxl2+f2 tz212) (49b) 

H4(q)=(#3+iO2)z2+z2(d3q2+e3 Iz~12 +f3  Iz212) (49c) 

H3(q) = H2(q). Hs(q) = n4(q) 

It has codimension 3 with unfolding parameters (#1,/22,/23), the coef- 
ficients (dl, el,f1) are real, and (dj, ej, fj), j~>2, are complex. From (33) 
we obtain ( r '=  4) 

~__ ~1 q 2 _ 2  #____L 1z112_2/*____L 3 1z212 
0 1 I  Q23 0 4 5  

0(4) -04 1.. ,,~(4) 02 ]ZI I 2 ..t- m( 4 ) .,72 +"0;400~/1 "~0 ;210" /1  ~0;20t"/1 1Z212 

+ 0 ( 4 )  IZlI2 2 -0;0,~ Iz~l--0<4)~0;020 Iz,! ~ +'<4)~0;00_~ Izd 4 (50) 

Following the arguments given after Eqs. (31) and (32), we see that each 
of three coefficients ~,,(4) o(4) ,,(4) ~ will appear in two equations \~0;210~ ~0;201 ~ ~0;011 ! 
[ q=  2 in (31)] and consequently will be at the origin of one relation. The 
other coefficients appear only in one equation [ q =  1 in (31)], so that 
finally we shall have three relations in this case. One obtains 

a ( 4 )  _ d~ o ( 4 )  _ _  Re e2 0(4) Re f3 (51a) 
0;400 2QH' ~o;o2o Q23 ' ~0;002 = 0 4 5  

a(4) _ e ! _ 2 R e  d 2 (51b) 
0;210 011  Q23 

a(4) _ f l  _ 2 R e  d 3 ( 5 1 c )  
o;2ol 011 045 

a(4) 2 R e  f 2  _ 2 R e  e 3 (51d) 
0 ; 0 1 1 = - -  Q23 - -  04-----7 

The three relations will be 2Q1~Red2=elQ23, 2QllRed3=flQ45, 
Re e3Q23 = Re f2Q45. 

(d) The (2~)(f2) instability has two eigenvalues zero (variables ql 
and q2) and one pair of pure imaginary eigenvalues ++_iO (variables 
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q3 = Z, q4 = 5). With the symmetry  ql ~ - q l ,  q2 ~ - q 2  (both 
simultaneously),  the normal  form of Hj,(q) is 

Hl(q)=#lql+blq~+b2q~q2+b3qlq~+b4q3+bsqllz[2+b6q2[z[ 2 (52a) 

H2(q)= #2q2 + clq3 + c2q~ql + e3q2q~ + e4q~ + csq 2 [zl2 + c6ql lz[ 2 (52b) 

H3(q) = (#3 + iO) z + z(dl [z[ 2 + d2q~ + d~qlq2 + d4q~) (52c) 

and H 4 ( q ) =  H3(q). The coefficients {bj, cj} are real and {dj} complex. It 
has codimension 3 with unfolding parameters  (#1,/~2, #3). In order  to have 
a polynomial  expansion in this case, one has to impose Q12 = Q21 = 0 [see 
after Eq. (12)]. Then from (33) one obtains 

2#1 2 2#2 2 2#3 ,(4) .74 
- q2-u  4 Izl +  0;400 1 

..7(4) n 3  .7(4) ~,2 .~2 • 0 (4 )  . 
+ ~0;310'~ 1 q2 + '-'0;220 ~1 't2 q ~'0;130~/1 q3 

(4) .~4) . 4 . . ~ 4 )  .,2 izl 2 + ao;11~qlq2 Izl 2 -~- ~0;040~/2 = ~0;201 "/1 

0(4)  rt2 12"12+ .0'(4) ]z[ 4 ( 5 3 )  + ~o;o21 u'~ ~o;oo2 

a(4) bl 
o;400 = 2Qll  

a(4) Cl 
0;040- 2Q22 

a(4) 
Re d 1 

0;002 - 034 

(4) __ 2b2 _ 2C 4 

a~176 3Qll Q22 

a(4) - -  b3 - -  C 3  (54) 
o;22o- 011 022 

a(4) 
2b4 2c2 

0;130 - Qll  3Q22 

a ( 4 )  
_ b5 2 Re d2 

0;~01 Q~I 034 

a(4) _ 2b6 2c6 2 Re d 3 

o;111 011 Q22 034 

c5 2 Re d 4 
a(4) 

0;02, Q22 Q34 
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We have here seven relations, 

b3 r bs 2 Re d2 

Q,1 Q= '  Qn Q34 ' 

b2 C4 b4 C 2 

3QH - Q22' QI~ - 3Q22' 

c5 2 Re d 4 
(55a) 

Q= O~4 

b6 _ Re d3_ c6 (55b) 
Qll Q34 Q22 

We remark that if we impose the symmetry q~ --+ -q~ and independently 
q2 ~ -q2,  we have that b2 = b4 = b6 = c2 = c4 =- c6 =- d3 = 0 and the second 
set of relations (55b) is automatically satisfied. 

To close this section, we give a practical method to obtain the poly- 
nomial potential and the relations which guarantee its existence. From the 
general discussion one knows that ~b=~bEzJ+~bo u'3 [see (33)]; then one 
computes 

1 ~ 
H~(q) = - -~ Q jj ~q j, l <~ j <<. m 

1 0 ~ .  
H' _ ,  l<~k<.p m+2k 1 = - - ~ Q m + z k  1,m+2k?Zk 

and identifies H'=(q) with H'~(q), where H"(q) is obtained from Ha(q) 
[-giwm by (8)], replacing there all the coefficients of the monomials by 
their real part. This determines all the unknown coefficients in ~bo Er'l and 
also the relations when one of the coefficients is determined more than 
once. These rules mean that in the case of multiple Hopf bifurcations 
(O1,f22 ..... Op) the potential depends only on the real part of the coef- 
ficients of the deterministic equation and consequently the attractors and 
repulsors near the bifurcation are determined only by these coefficients. 

4. C O N C L U S I O N S  

We have considered here the general problem of obtaining polynomial 
expansions in the gross variables and in the unfolding parameters for the 
nonequilibrium potential associated with a general master equation in the 
neighborhood of an instability with diagonalizable linear part. We have 
shown that these expansions exist, provided a set of relations is satisfied 
among the coefficients of the master equation. But at the same time these 
results are also relevant for the study of dynamical systems near an 
instability. Consider the dynamical system 0r = H,(q) and let q(t) be solu- 
tion. Then if Q ~  is a positive-definite matrix and if ~b(q) is a solution of the 
Hamilton-Jacobi equation H(q, V~b)= 0 with the Hamiltonian 

H(q, p) = ~ p~(H~(q) + �89 (56) 
I t ,  V 
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we have 

d 1 O~b #~b ~<0 (57) 
dt O(q(t))= - ~  Z Q.v aq--~ #q--~ 

# ,  v 

i.e., ~b(q) is a generalized Lyapunov functional. (1' 14) We can interpret this by 
introducing the white noises {r with zero mean and correlations 
(~u(t)~v(t ' ))=Q~a(t- t ' )  and considering the stochastic differential 
equations 

4. = H.(q) + ~11/2~.(t) (58) 

The Fokke~Planck equation associated with (58) will be 

~p(q,  t) = p(q, t) (59) 

which is of the form (2), and the associated classical Hamiltonian in the 
sense of (5) will be (56). In the weak noise limit ( q ~ 0 )  the stationary 
probability associated with (59) will be e x p [ -  (I/r/)~b(q)] and ~b(q) will be 
Lyapunov functional in the sense of (57) for the dynamical system 
O. = H~(q). From this point of view we should also remark that for lower 
codimensions the relations which must hold in order to have polynomial 
expansions do not fix the values of the coefficients of Hu(q), but only 
impose inequalities among them (in fact, for codimension-one instabilities 
one finds no relations~2)). The reason for this is that if our problem is to 
find a Lyapunov functional for 0 . = H . ( q ) ,  the matrix Q.v is arbitrary 
apart from the fact that it must be positive definite. We can illustrate 
this with the (~s instability (example a) of Section 3, where the relation 
is Q2362=2QnReci, which only imposes b z R e c l > 0 ,  since Qn and 
Qz3 = Q'n + Q~3 are positive (Q'~, is the matrix corresponding to the real 
variables, which must be positive definite; see the last paragraph of 
Section 1). The same holds for examples b and c of Section 3. In example d, 
which is of codimension three, the situation is different: relations (55a) 
give again only inequalities between (b3, bs, c3, c5, Re d2, Re d4) and 
fix (Qn,Q22, Q34), but then the four relations (55b) determine 
@2, c4, c6, Re d3) in terms of (b2, b4, b6). This is in fact the generic case for 
higher codimensions. It should be remarked here that many important 
features of the deterministic behavior of the dynamical system r = H~(q) 
near the instability can be obtained from the polynomial potential when it 
exists. (2'4'12) In this context we must mention that the existence of a poly- 
nomial potential does not exclude the possibility of having limit cycles or 
coexisting attractors. A simple example is the dynamical system 

2=(i.tWif2)z-l-(l +i f l ) z l z l2- ( l  +ic~)zlzl4+r/1/z~(t) (60) 
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where z(t) is a complex variable, ~= ~1 +i~2, with (~1, ~2) white noises 
with zero mean and correlations (~j( t )~k( t ' ) )= Q6jk 6(t-t'). The poten- 
tial here is 

1( 1 1 )  
~= - ~  #1zl2 +-~lzl4-~lzl 6 (61) 

and for -1 /4  < # < 0 one has coexistence of the stable fixed point z = 0 
with the stable limit cycle lz] = (1/x/2)[1 + (1 +4#)1/2] 1/2. The question is 
open of what happens when polynomial expansions do not exist, although 
a natural conjecture is that chaotic behavior is not compaticle with a poly- 
nomial potential. One reason for the failure of a polynomial expansion can 
be found in formulas (44) and (48), which exhibit singular denominators. 
However, here we have looked for polynomials in a special set of variables 
q and this does not exclude good polynomial approximations in other 
variables. This is indeed the case for the ~2 instability.(17) 

The techniques preseted here can be used to study spatially extended 
systems; however, the appearance of bands of critical modes introduces 
new conditions for the existence of polynomial potentials/15) In the case 
when the linear part of the field Hu(q) is not diagonalizable and presents 
Jordan blocks, one has a different situation, which will be discussed else- 
where. 

ACKNOWLEDGMENTS 

We thank R. Graham, H. Lemarchand, G. Nicolis, and E. Sulpice for 
stimulating discussions. This work has been partially supported by DTI 
(Universidad de Chile) and FONDECYT. 

REFERENCES 

1. R. Graham, Weak noise and nonequitibrium potentials of dissipative dynamical systems, 
in Instabilities and Nonequilibrium Structures, E. Tirapegui and D. Villaroel, eds. (Reidel, 
1987), and references quoted therein. 

2. R. Graham and T. T61, Phys. A 33:1322 (1986); 35:1328 (1987). 
3. H. Lemarchand and G. Nicolis, J. Stat. Phys. 37:609 (1984). 
4. E. Sulpice, A. Lermarchand, and H. Lemarchand, Phys. Lett. A 121:67 (1987). 
5. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 1984). 
6. R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys. 9:51 (1973). 
7. F. Langouche, D. Roekaerts, and E. Tirapegui, Nuovo Cimento A64:357 (1981); 

Functional Integration and Semiclassical Expansions (Reidel, 1982). 
8. E. Tirapegui, Stochastic Processes in Macroscopic Physics (World Scientific, Singapore, to 

appear). 

9. C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet, and G. Iooss, Physica D 29:95 (1987). 



1012 Descalzi and Tirapegui 

10. C. Elphick and E. Tirapegui, Normal forms with noise, in Instabilities and Nonequilibrium 
Structures, E. Tirapegui and D. Villaroel, eds. (Reidel, 1987). 

11. V. Bargmann, Commun. Pure AppL Math. 14:187 (1961). 
12. A. Lemarchand, H. Lemarchand, and E. Sulpice, Interaction of a Hopf bifurcation and a 

symmetry-breaking bifurcation: Stochastic potential and spatial correlations, Preprint, 
Laboratoire de Chimie G6n6rale, Universit6 Pierre et Marie Curie (1988). 

13. H. Lemarchand, Bull. Acad. R. Belg. 70:40 (1984). 
14. H. R. Jauslin, J. Stat. Phys. 40:147 (1985); 42:573 (1986). 
15. A. Fraikin and H. Lemarchand, J. Stat. Phys. 41:531 (1985). 
16. Hu Gang, Phys. Rev. A 38:3693 (1988). 
17. O. Descalzi and E. Tirapegui, in Instabilities and Nonequilibum Structures II, E. Tirapegui 

and D. Villarroel, eds. (Kluwer, to appear, 1989). 


