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Nonequilibrium Potentials Near Instabilities
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The existence of polynomial approximations for nonequilibrium potentials
determined by a master equation near an instability of arbitrary codimension
with diagonalizable linear part is studied. It is shown that the approximations
exist, provided some relations are satisfied between the coefficients of the master
equation.
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1. INTRODUCTION

The practical determination of a nonequilibrium potential associated with
a Markov process has received considerable attention recently. In the case
of diffusion processes obeying a Fokker-Planck equation, Graham
and collaborators have shown that the potential is generically non-
differentiable.”) It has, however, been shown by these authors that in the
neighborhood of codimension-one instabilities the potential admit a poly-
nomial approximation and that this also holds in the neighborhood of
codimension-two bifurcations with diagonalizable linear part for a special
choice of noise sources.” In fact, in this last reference a much more general
result is obtained, since near codimension-two bifurcations smooth non-
polynomial potentials are explicitly constructed which reduce to polyno-
mial form in special cases. The problem of polynomial expansions has also
been considered recently in ref. 16 for two-variable systems and in the case
of Markov processes obeying a canonical master equation it has been
studied by Lemarchand and Nicolis.®) In particular, Lemarchand and
collaborators*'?) have recovered the polynomial expansions of Graham
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for the codimension-two instabilities (2,,) and (¢Q) provided that a
relation is valid between some coefficients of the master equation, a condi-
tion which is equivalent to the special choice of noise sources in ref. 2. We
shall study here the general problem of the conditions that the coefficients
of the master equation must satisfy in order that the potential admits, near
an arbitrary instability with diagonalizable linear part, an approximation
with polynomial dependence in the gross variables and in the unfolding
parameters.

Our starting point is a master equation involving a small expansion
parameter # =2~ in canonical form in the sense of van Kampen.* This
means that if Q=(0Q,, Q,,.., Q) are the gross variables, the transition
probability is of the form (¢,=27'Q,,r,=0,— 0., f(2) a given func-
tion)

WQI1Q)=1(2) ). n*w.(g,r) (1)

220

and then after a scaling of time ¢ =#f(€2) ¢ the master equation takes the
form (d,=0/dq,)

ng—tp(q, n=3 n*y [eXp<~n % r,ﬁ#)—l]

az0 r
xw,(q, 1) p(g, t) (2)
which can be written as
a o
N, p(g1)= Y. 1°L,(g,nV) p(g, 1) (3)
az=0
with
L(g,nV)= 3}, 1"0, 0,45 "(q) (4)
nzl

Following Kubo etal,’® we can associate a problem of classical
mechanics with this master equation defining the Hamiltonian

H(q, p)=Lo(g V= —p)= > (=1)"p, - p, A" "(q) (5)

nzl

In the Fokker-Planck case n measures the intensity of the noise sources
and here of we call Q the volume (which is often the case), it represents the
inverse volume. We shall be interested in the limit # — 0, for which a WKB-
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type expansion can be set up, which gives the transition probability density
in the form”

P(q, t19¢, to) = Pwks(q, t1qo, 1o)(Lo + Z n"l,) (6)
nzl
where
1
Pwks(q, t]qo, to)=¢€xp | — EA(% g0, to) (7)

with A4(q, | q,, 1) the classical action for the specified boundary conditions
calculated with the Hamiltonian (5). Using functional integral techniques,
one can give explicit formulas for all the corrections I; in (6) in terms of
the solution of the mechanical problem defined by (5).7"® The form (7)
shows that we can write a WKB approximation piks(9)~
exp[ —(1/1) ¢#(g)] for the stationary probability, where ¢(q) is called the
potential, which satisfies then the Hamilton-Jacobi equation H(g, V$)=0.
Putting

Hﬂl“-u,,(q):l’l! (—1)"A611un(q)

we remark that in the limit # — 0 the master equation would reduce to a
deterministic one and the deterministic macroscopic equations would be
g.=H,(q). We shall speak of a bifurcation here when the vector field
H.(q) [we assume H,(0)=0, ie, g=0 is an equilibrium] becomes
singular, ie., its linear part has eigenvalues with vanishing real part. We
treat an instability with diagonalizable linear part and such that the equi-
librium ¢ =0 is persistent in a neighborhood of the critical point (the point
where ¢=0 loses its stability) in the space of parameters. Then, if we
assume that by a nonlinear change of variables, H,(g) has been put in
normal form,® its linear part will be diagonal and at the critical point for
the (mé)(Q,---L2,) instability it will have eigenvalues {o,, | <a <N},
where 0,=0, 1<a<m; 0,5 =i02,,0,. 5= —12,1<j<p;06,,.=7,,
I<a<N-—n, Rey,<0; and n=m+ 2p is the dimension of the critical
space. It can be shown that the stable variables corresponding to the
eigenvalues {y,} can be eliminated from the problem (for the Fokker—
Planck case see ref. 10; the result is the same for the master equation).
Finally, we have to solve a Hamilton-Jacobi equation H(g{,.., ¢y,
0, @,..., 8,0) =0 in the critical variables. Putting

H(g, p)=) (r') "H, --ulq)p,- P,
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the vector field {H (1G> Z15 Z1s Zps  Zp)s 1<u<n} (here
Gmi1=Zp Gmvz =25 L <j<p, and Z; is the complex conjugate of z;)
has the following normal form in the unfolding of the singularity®:

Hoz(q) =Hoqq + Fa(qla"" Am;s |21|2’"" \Zp‘z)’ 1 < asm (83)
Hm+2117 l(q) = (:u'm+a + ier) Zac + ZaGoc(qla"'a qm3 |Zl|2a"" |Zp|2) (Sb)

where 1 <a< p, and H,, ,,,(q) is the complex conjugate of (8b). In (8),
{ty» 1<a<m+p} are the unfolding parameters (the instability is of
codimension m + p), the critical point is {u,=0,1<a<m+ p}, and we
have assumed that the frequencies {Q,,1<a< p} are nonresonant. We
remark here that we have introduced in the standard way complex
variables to write the normal form of H ,(g). Originally the master equation
is real and if the real critical variables are (gi,..., ¢,), onc has to solve a
Hamilton-Jacobi equation H'(¢’, V'¢)=0. One puts ¢;=g;, 1 <j<m, and
Gmirk—1 = Zk = Gyt Vi @ik = Zk = Qmr2k—1— Gms 26>
1<k<p, and this gives the normal form (8) corresponding to the
Hamiltonian H(q, Vé)= H'(q’, V'¢). The matrix

0= 8°H'(q',V'¢)
T 5(0,¢) 8(044)

g'=0
must be positive definite and this implies restrictions on the matrix

9*H(q, V4)

Q2= 50.9) 02,9)

q=0

2. SOLUTION OF THE HAMILTON-JACOBI EQUATION

In order to solve H(g, V$)=0, we put =3 ,., 4", where ¢l (q)
is of polynomial order r in (g, ---¢,) and develop H(g, V¢) =0 in powers
of g. The notation (---)I" stands for the terms in (---) which are of order »
in ¢g. We put

H(q)= ) B,q.,+0(¢"), Q,=H,(g=0)

The sum for ¢ starts with ¢[*, since g =0 is an extremum of the potential
¢ and one must impose Vg =0 there.!'” Our set of equations is then
H(g, V)1 =0, r>2.
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One has
H(q V¢)[r]_ z z mm ( )[JO] (5 ¢)[11]

sz1 jo- -‘:

"(5%(15)[“ 9)
with j, =0, j, =1 for k;l, Zk oJk=".
Putting ¢®*'=3 3" _, 4,,4,9,, one obtains from (9) for r=2 the

equation (B7 is the transposed matrix of B)
AB+ B A+ AQA=0 (10)

The diagonal matrix is given by B= A+ .77 u, BY), with

P
= Z in((S#,m+2j— 15v,m+2j—1 ——5y,m+2j6v,m+2j) (11a)
B“’—éwéw, 1<j<m (12a)
B}ttr\7+k)_5um+2k-16vm+2k71+5;¢m+2k6vm+2k> lgkgp (lzb)

It is simple to see that (10) implies that A vanishes when u;— 0, and
moreover that it has the expansion

m-+p

A= Z ujA(j)+0(uku1) lf Qz] Qu ij

j=1

(i< m, j<m). This condition is the first relation we need on the coefficients
of the master equation in order to have a polynomial dependence in the
unfolding parameters for the potential. We assume that it is satisfied from
now on and we shall come back to its interpretation at the end of this
section. Then we have

2
AP = —=-§, .5 1<j<m (13a)

Q’ M jY v, jo
b/

2
Qm+2k~l,m+2k

+5u,m+2k5v,m+2k71)7 I<k<p (13b)

(m+k)__
Auv - = (5u,m+2k715v,m+2k

We.rfsmark that Q;, 1<j<m, and Q,,, 5 _ 1.+ 2> | Sk < p, are real
and positive. One obtains from (9) for r > 3 equations of the form
[rl — Jir1 C 4
L¢ —[ s L= Z LuquT (14)

wv=1 u
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with L= B+ QA and where I'"! depends only on {#'*], s <r}. We see then
that we can try to solve (14) by recursion in ». But we are interested in
obtaining solutions of (14) with polynomial dependence on the unfolding
parameters {y;, 1 <j<m+ p}. We put then

m-+p
Pr=41+ X el + O

ji=1
m+p
PI=I0 Y w7+ 0lss,)

Jj=1

One also has L=L® + 747 4, LV + O(p; ), with

LO=4, LY=BY+04Y, 1<j<m+p, and L=LO+ 3747 gV
with L{) defined as in (14) with L replaced by L. Putting D=L, we
obtain for the {¢!"3,0<j<m+ p} the equations

Dl = 1§ (15a)
D= —LDgEI+ 1M =7, 1< j<m+p (15b)

We have to solve these equations starting with (15a) at each step of the
recursion in r (note that JI"! depends only on ¢&1, s <r). Using (11a), one
obtains

L 0 0
D=Y iQ(z——7 — 16
g‘l e (Z] oz, 52—-) (16)

From (12) and (13) one gets

ij‘,) = _5”5”1_25"15#% (1-9,), I1<j<m (17a)
J
LL’:H—j) = _5u,m+2j7 1 5v,m +—-1" 5u,m+2j5v,m+2j

Qm+2
‘26v,m+2]~1 s (1_5u,m+2j41)
Orv i tmr2y

~26 _‘QMI—(l_éu,m+zj)’ I<j<p (170)

Y Omsrimtm+yy
and the LY are of the form
LV =g, __6_+ Y L(")i I<j<m (18a)
'\ oq ¥ 0q,)’

Joustg
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0 ‘ 0
R O VT SO
0q,

02]’ pEmMm+2i—1
+z.(_i+ 5 L(mﬂ';i) 1<j<p (18b)
/ @Z] uEm+2 u’m+]0q#

Before solving Eqs. (15), we need some preliminaries. Let # be the
space of formal power series in (qy, g2, 4,) and # ) the subspace of #
of polynomials of degree r in (¢,,.., ¢,). The operators L, D, and LY act
on # and leave #) invariant for all r and in general if an operator R
acting in J# leaves the spaces # " invariant, we shall write R| 3 for the
restriction of R to # . We define now a suitable scalar product <-, -
(antilinear in the first argument and linear in the second) in s# which is
such that the monomials

n —1/2
{( I1 mj!) q7iqs> - g, m; entire numbers}
j=1

form an orthonormal basis'? (see also ref. 9). With this scalar product the
adjoint of the operator ¢, (multiplication by ¢;) is simply J/dq;, ie.,
q;" = 0/0q;, and consequently D* = —D. Then Ker D= {fe #:Df =0} =
Ker D* and it is easy to see that it is the space of functions F(q,,..., ¢,,
|zy1%s 12,1%), which can be developed in formal power series in their
arguments (g .., g 12417 [2,1%).

We come back now to the solutions of (15) which are equations in
#. In order to solve (15a) for ¢LJ, one must impose that I§7 is
orthogonal to Ker D* [ # " =Ker D[ #" (Fredholm alternative) and
this imposes relations between the coefficients of the {@L*), s <r} and of the
master equation. Once this solvability condition I§1 1 Ker D¥ [ # ") is
satisfied, we can solve (15a) in the form ¢f1= x5+, where x5 is a
particular solution of (15a) and y['1e Ker D is of the form

3= Y a) Jmep gl gl |2t 2, [P (19)
Jk=0
with 37 j,;+2¥% | j...=r and the {agfg.l___jw} are arbitrary coef-

ficients. One has the form (19), since the monomials
{q{lq{;’n lzll2]m+l...[2p’2jm+p’ z ]k+2 z jm+k=r} (20)
k=1 k=1

which we call the resonant terms, form a basis of the space Ker D [ # ).
We remark that D is closely related to the homological operator A =D — 4
associated to the instability (see ref. 9. We replace now 451 in (15b) and

822/57/5-6-3
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we must impose JI' L Ker DV [#"), 1<j<m+ p. This gives a set of
relations linear in the {af), ..., 1, which overdetermines them in the sense
that one has more relations than coefficients and this leads again to
relations among the coefficients of the master equation. This general
mechanism of solvability conditions via the Fredholm alternative is then
what produces the relations found in refs. 2, 4, and 12, which are then a
consequence of imposing a polynomial expansion in (g, ---¢,) and in the
unfolding parameters (g - - fh,, 4 ,)-

We shall obtain now explicitly the first nontrivial order from (15). Let
the entire number #' >3 be such that the first nonlinearity in the normal
form of the vector field H ,(g) arrives at s=r'—1, ie., one has

Hl(g)=H,(q)"+ Y Hyp™

szr—-1

In the generic case r' =3 unless there is a symmetry in the problem. For
example, the symmetry g, — —g;, 1 <j<m, implies r' =4 and also guaran-
tees the persistence of the equilibrium at the origin ¢ =0, which we are
assuming here. It is easy to check from the expansion (9) that 15! =0 for
s<r’ and this will imply, as we shall see, [*1=0, 1 <j<m+ p, for s<r".
We suppose r’ > 3; then Egs. (15) for r=3 are

D¢l'=0 (21a)
Dl = —LDgP =72 1< j<m+p (21b)

since /P1=0 also. From (21a) we obtain ¢5*leKer D[ # ), ie, it is of
the form [see (19)]

Wt N Rt T CN R EN 22)

O/

We replace ¢! in (21b); then the solvability condition
JEVLKer D* P a#® gives, Vo and 1< j<m+ p,

8D, LOGEy = (LU g2, 951> =0 (23)

The set {g!} is-the basis of Ker D [ # ") formed by the monomials in (20).
From (18) we have

. d
(g T T0)
J

n#j

d
5——+B“’ I<j<m (24a)



Nonequilibrium Potentials near Instabilities 1001

L +f)+=<—2j+ Z LLm+‘f{)2] 1 q#)é—
Zj

puFEm+2ji—1

_ m 0
+<—Zj+ Z LL m+-{{)2]qy>a_z.

uEm+ 2 7

0 )
=—< P +za—a—> + B+, 1<j<p (24b)

We can write L®+ = B + B, with

d
B"‘)“—qk I<ksm
o,

9, 0
Bg"+k)=—<2k7+z_k‘f>, lskgp

The form of B shows that B{*)g{" is orthogonal to Ker D ", while
1

for

g=qi' gl |z, |tz Ynte
one has
B{g=—jig, l<k<m; By Mg=-2, g 1<k<p (25)

Since ¢§*1e Ker D, one obtains from (23) and (25) that {g{’, ¢§°>!> =0,
which implies that all af, , in (22) vanish and ¢{’!=0. In the same
way we shall have ¢51=0, s<r". For r=r one has If'1=0 and I["} is

given by

, 2 ,
IFl=—HJ(" g, 1<k<m (26a)
O
[r1 2 =11z
L= [Hm+2k)l(q)[r Zp+cc], I<k<p (26b)

Qm+2k*1,m+2k

Due to (8), we see that IL"! will contain only resonant terms. Since
I"1=0, we obtain from (15a)

BYI=Y a0l (2 (27)

“Im+p

The solvability conditions of (15b) will be (1 <k<m+ p)

L0 g0 g5 = BPgO gE D= D (28)
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where {g\"} is the basis in (20). Since /{7 contain only resonant terms,
ie, I" e Ker D[ #"", we can write

’ ’ A ] Ym im
DN N A ol R A (29)
If
gy =qft- gy |z, [Pt |z, [P

one obtains from (28) that

—jk@§ o =b L, 1<k<m (30a)

S /LI Y S PSP § N8 (30b)

If j, =0 in (30a) [respectively, if j,,,=0in (30b)] b} , =0, since
from (26a), IV necessarily contains ¢, as a factor [respectively

by i ey O since from (26b) I\ necessarily contains |z,|* as a
factor], and Egs. (30) are identically satisfied. Let us consider now a
definite coefficient a{,) -+ j,,, , of (27) which we want to determine and let
{i1, iy iy}, with 1<ij<iy<---<i,<m+p, be the subset of
{1,2,.,m+ p} such that j, #0, /=1, 2,.,q. Then af), .,  will appear in
the left-hand side of (30) in the ¢ equations

—jnadd b](;),jl, wdmep  1=12,..q (31

“Im+p
where j; = j,, i;<m, and j; =2j,, i;>m. This gives the g —1 relations

, 1
e Ly a3, (32)

Vi Jmep o gyt dmep
Jay Ji

between the coefficients of I, and if they are satisfied we can determine
af) . jm+, Repeating the same procedure, we can determine all the coef-
ficients of #5"1, provided a set of relations of the type (32) are satisfied. We
can now give the final result ¢ = ¢+ ¢l for the potential up to this

order using (13) for the matrix 4. One has

‘ Hom o+
¢= ~Lq; -2 Z g

J=1 ij j=1 Qm+2j—l,m+2j
+Zag])l ]m+p ] q{"‘n |Zl|2jm+1”.|zp|2jm+ﬁ

+0(qx ", 192 (33)
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In order to get a better understanding of the origin of relations {32),
we shall give a second method to solve Eqs.(14) which is a direct
generalization of the formalism developed by Lemarchand.* From (10)
we obtain L=4"'(—BT) A, where B is a diagonal matrix in the critical
space of dimension » with basis vectors

{e,=(1,0,..,0),.,e,=(0,.,0,1)}

ie, Be,=s;e; with s;=p,. One has 1 <j<m, and 5, 36 1 =ty & + 124,
Stk = Hmsx—i82;, 1<k < p. Putting §=4"", we see that the vectors
{0e;, 1< j<n} are eigenvectors of L with eigenvalues (—s;). Then any
matrix C with columns proportional to the components 8, of the vectors
fe, will diagonalize L. We take for C the matrix

2
Cp=—L0,, 1<j<n 1<k<m (34a)
Qkk
21,
Cimezme—1=— e 0+ 200 I<k<p
Qm+2k—l,m+2k
(34b)
C . 2#m+k 0 1<k<
jom+2k T T Jom+2k— 19 SLE Y/
Qm+2k71,m+2k
and from (10) we see that 0, = ij/(sj-lrsk).
One has (C'LC),=rd,, with r=—pu; 1<j<m; and
P 2k—1= Hmy i F 020, Vol = — 4 — 192, 1<k < p. We perform in
(14) the change of variables q,=3>"; _, C;, Q,; then, putting
FQ)=¢"q),  TUNQ)=1"(q)
we find that Eq. (14) becomes
[31(Q)= Y, r,0,=—¢"(Q)=I"(Q) (35)
r=1 an
One has C= D+ O(y,), with
Zﬂk ij .
—_— 1<j,k<m 36
" Ou B+ / (36)

and

Dy=46, ifeither jzmorkz=m
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The change of variables is then of the form

4=0,+ % 2 0. 10,0) 1<i<m  (37a)
k=1uj+”k
k)

k= Qi+ O, Q) I<k<2p (37b)

Putting

FQ) =Y a0 O

Jk

"NQ)=Y b)) , 010 ji>0,

Jk

M=
~—
e
Il
~

we obtain from (35)
ay) L, =b /Xl rii (38)
one has
n n P
Z v = _Z #i.ji— z ‘#m+k(jm+2k—l+jm+2k)
i=1 i=1 k=1

+ 12 (Jon 26— Tt 26— 1 (39)

which vanishes in the limit u;, >0 when j,, , 5 = j, 1 21, 1€, just for the
resonant terms

Q{l Qir'zn |Qm+l|2jm+1 iQm+2p—1|2jm+[J

which are the elements of Ker D. We see then that in the variables {Q,}
the potential will be singular in the space of parameters in all lines

n »
Z .]zu'z+2 Z /’Lm+kjm+k=0 (40)
i=1 k=1
where {j;} are entire numbers positive or zero and 27_,j;+2
> Jmix=r=3 [from (38) this holds whenever E;:?_,jn;éO]. We can
elimine these singularities, imposing in (38) that when j,, , 2x _ 1 = j,, + 2x ONE
must have

TE _an ;
By =80 i

with ¢ nonsingular in the limit 4, — 0 and these relations can be seen
to be equivalent to the set of relations (32) previously found. We shall
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come back to this point in our discussion of some illustrative examples in
the next section. We remark that if m > 1, one also has singularities of the
potential in all lines u; 4+ p, =0, j<m, k<m [see (35)] due to the change
of variables. These singularities are eliminated if we impose Q,;= 0,6,
i<m, j<m [see after Eq. (12b), where these relations were also found]
and these conditions are the first we have to impose on the coefficient of
the master equation in order to have a polynomial approximation for the
potential. If they are satisfied, then (37) shows that the change of variables
reduces to q;,= Q; + O(u, Q,), the resonant terms are the same in both sets
of variables, and ¢'"1(g)=¢"1(Q = q) at lowest order in the {y,}.

3. SOME ILLUSTRATIVE EXAMPLES

Codimension-one instabilities are simple to treat and no relations are
needed to have a polynomial approximation®®’ to the potential. We shall
give here the results for the instabilities (£Q), (2,£2,), of codimension two,
and (£Q,Q,), (2E)(2), of codimension three.

(a) The (£Q) instability has one eigenvalue zero associated with a
variable g, and a pair of pure imaginary complex conjugate cigenvalues
+iQ associated with the complex variable z (q,=1z, g;=2). With the
symmetry g, —» —q, the normal form of H (q) is

Hi(q)=uq:+bi1gi +brq, |2|? (41a)
Hz(q)=(u2+i.(2)z+z(cqu+cz|Z|2) (41b)

and Hi(q)= H,(q). The coefficients (b,, b,) are real and (¢, ¢,) compiex.
It has codimension two with unfolding parameters u; and p,. From (33)
we obtain (here ' =4)

Hi o Ko\ 2 4y a

$=———q1—2-=|zI"+ aglq

Q! O oot
+aghqi 1212+ all, |z|* (42)

with (Re stands for real part)

b
W=~ 35~
11
b 2Rec
oty = — gt (43)
11 23
@ ”Re c,

ao,020 = 0
23
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We see that one relation is needed in this case due to the double
determination of af}); in (43); it is Q,36, =20, Rec;.
Using the second method, we obtain from formula (38) that

00 =alho» 340y =aly,, and
a = _#1(b2/Q11)+2#2(Re €1)/Qas (44)
Byt
We see then that if the relation Q,3h,=20Q,, Rec, is satisfied, the

numerator in (42) is proportional to (i, + ¢,) and one obtains a5}, = al}},,

in agreement with our general discussion after Eq. (40). As we explained
there, this is the general mechanism at the origin of the relations needed to
have polynomial expansions.

(b) The (2,9,) instability has two pairs of complex conjugate pure
imaginary eigenvalues +iQ2, and +iQ, related, respectively, to the
variables q,=2z,, q.=2;, 3=2,,qs=2,. It has codimension 2 with
unfolding parameters (y,, i,). The normal form of H (g) is

Hi(q)=(u, +iR2,) 2, + z,(d, 1z,* + d; | z,|*) (45a)
Hy(q) = (uo +i2,) 2, + z5(ey |z, * 4 €5 |2,]?) (45b)

with  H,(g)=H,(q), Hiq)=H(g), and where the coefficients
(d,, d,, e,, e,) are complex. From (33) we obtain (r'=4)

u Il
#= 250 |2 =2 5E izl + a2,/
+af), 12,12 |zl + alfd, [2] (46)
with
a4 = _Red;
0:20 Q12
Red Ree
@) _ 2_ L
a® = 2 =2 (47)
0;11 le Q34
a4 = _Ree,
0:02 O34

We need one relation here due to the double determination of '}, and it

is 0, Re /=03, Re d. With the second method we obtain from (38) that

Ao =0ale, Al =05
Red R
&(1‘?11: _2,u1( edy)/Q12+ pa(Reey)/Qs4 (48)

Myt po

which reduces to af}}, when the condition Q,, Re ¢, = 0,4 Re d, is satisfied.
This corroborates what we said in the previous example.
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In the next examples we only give the resuits of the first method.

{c}) The (£0,0,) instability has one eigenvalue zero associated with
a variable ¢,, and two pairs of pure imaginary complex conjugate eigen-
values +iQ, associated with (q,=2z,,q;=2,) and +iQ, associated with
(qa =125, q5=2,). With the symmetry ¢, - —q; the normal form of H (gq)
is

H1(9)2#1‘11+d1‘ﬁ+el% |2112+f1611 |22|2 (49a)
Hz(CI)z(Il2+i-Ql)Z1+Z1(d2‘I%+32 |Z1|2+f2 12212) (49b)
Hy(q)= (43 +i9,) 2o+ 2,(ds 45 + €3 |2, 1* + [3 12,]%) (49¢)

H;(q)=H,(q). Hs(g)=H,(q)

It has codimension 3 with unfolding parameters {u,, it», 4s), the coef-
ficients (d,, e,, f) are real, and (d,, e;, f)), j = 2, are complex. From (33)
we obtain (r'=4)

/,13 2
p=—— 2 2 i 112 — |z,
Qu O Q45
+aghng] + (()4;10‘11 |z, |7 +a0 bor 43 |2,°
+ao;011 ERREAE +ag?())20 |z, +a(()‘:'())02 |2,]* (50)

Following the arguments given after Egs. (31) and (32), we see that each
of three coefficients (ali)yo, abiler, @5i4y;) Will appear in two equations
[¢=2in (31)] and consequently will be at the origin of one relation. The
other coefficients appear only in one equation [g=1 in (31)], so that

finally we shall have three relations in this case. One obtains

fhon = 2311, o=~ Al =GR (Sl)
ago = _éz _2—% (Slc)

The three relations will be 20, Red,=e,0,;, 20, Red;=fQ.s,
Ree;Q,=Re f,0,s.

(d) The (2£)(R2) instability has two eigenvalues zero (variables g,
and g,) and one pair of pure imaginary eigenvalues +iQ (variables
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gy=2,q,=2). With the symmetry g¢,—> —¢q;,, ¢,— —gq, (both
simultaneously), the normal form of H,(g) is

H1(‘])=.U1Q1+b1‘1§+b29%42+b3Q1qg+b4qg+b5‘h |Z|2+bsqz |Z|2 (52a)
HZ(Q)=ﬂ2q2+clqg+02q§ql +c3q2qf+c4qf+c5q2 |z|* + ¢64q, lz|> (52b)
Hy(q) = (us+i2) z + z(d, |Z|2+d2‘]f+d34142+d4Q§) (52¢)

and H,(q) = H;(q). The coefficients {b,, ¢;} are real and {d;} complex. It
has codimension 3 with unfolding parameters (i, u,, ti5). In order to have
a polynomial expansion in this case, one has to impose Q;,=Q,, =0 [see
after Eq. (12)]. Then from (33) one obtains

2 2 2
g e Mo 2
Ql Q22 Q34

(4) 3 “4) 2,2 4 3
+4ap.3109192 + 62209195 + ag;iso‘]ﬂz

(@) 4, 4 2.2 4 2
+a0;040q2+ao;;01q1 |z| +a§);}“q1q2 |z]

|21 + aioo 41

-I-af)‘?()mq% ]Z|2+a(()‘;1())oz |z|* (53)
b
ah
0:400 0.,
¢
g &
0;040 20,
hoa=
34
-
’ 301 O
b c
a®) =3 _ 3 54
0:220 O 0x» 4
o= — b= L
’ Ou 302
(4) _ __..{)_i. _2 RC d2

all) = =
0201 O Q34
2bg 2¢6 _ 2Red,

@4) _ _ 776 —

all = = =
ot Qu 02 Qs
s 2Red,

45,001 = — =
0 Qa4
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We have here seven relations,
b3_C3 —b_s_zRedz ~€5_—2Red4

0, 0» Qu  0Ou 0On O
b, Cq _1)4_ csy bs _Red; ¢4

30, 0 On 30 Qu Oun On

We remark that if we impose the symmetry ¢, » —¢, and independently
g, — —q,, we have that b,=b,=bgs=c,=c4=cg=d;=0 and the second
set of relations (55b) is automatically satisfied.

To close this section, we give a practical method to obtain the poly-
nomial potential and the relations which guarantee its existence. From the
general discussion one knows that ¢= ¢+ ¢L"1 [see (33)]; then one
computes

(55a)

(55b)

1 O¢
Hip)= —=0. 2 1<j<
Aq) 2Q,, 24, Jjsm
1 o9
2k 1= _EQm+2k71,m+2k(—3—2—k" I<k<p

and identifies H,(g) with H(gq), where H(q) is obtained from H,(q)
[given by (8)], replacing there all the coefficients of the monomials by
their real part. This determines all the unknown coefficients in ¢}"? and
also the relations when one of the coeflicients is determined more than
once. These rules mean that in the case of multiple Hopf bifurcations
(@4, Q5,.., 2,) the potential depends only on the real part of the coef-
ficients of the deterministic equation and consequently the attractors and
repulsors near the bifurcation are determined only by these coefficients.

4. CONCLUSIONS

We have considered here the general problem of obtaining polynomial
expansions in the gross variables and in the unfolding parameters for the
nonequilibrium potential associated with a general master equation in the
neighborhood of an instability with diagonalizable linear part. We have
shown that these expansions exist, provided a set of relations is satisfied
among the coefficients of the master equation. But at the same time these
results are also relevant for the study of dynamical systems near an
instability. Consider the dynamical system §,=H «(q) and let g(z) be solu-
tion. Then if @, is a positive-definite matrix and if #(g) is a solution of the
Hamilton—Jacobi equation H(g, V¢) =0 with the Hamiltonian

H(g, p)=Y pH(q)+30,.p,) (56)

"y
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we have
O¢ 6¢
oq, ﬁqv

d
=)= —3 z Qi (57)

i.e.,, ¢(q) is a generalized Lyapunov functional.-'*) We can interpret this by
introducing the white noises {£,(¢)} with zero mean and correlations
CEA)E(t))=0,,0(t—1) and considering the stochastic differential
equations

d,=H,(q)+n"%¢ (1) (58)

The Fokker—Planck equation associated with (58) will be

o 0 F;
Ep(q, t)=Za—[—Hu(q)+gQ,w 6—qu p(q, 1) (59)

wy YYu

which is of the form (2), and the associated classical Hamiltonian in the
sense of (5) will be (56). In the weak noise limit (y — 0) the stationary
probability assoctated with (59) will be exp[ — (1/1) ¢(g)] and ¢(g) will be
Lyapunov functional in the sense of (57) for the dynamical system
4,=H,(q). From this point of view we should also remark that for lower
codimensions the relations which must. hold in order to have polynomial
expansions do not fix the values of the coefficients of H,(g), but only
impose inequalities among them (in fact, for codimension-one instabilities
one finds no relations®). The reason for this is that if our problem is to
find a Lyapunov functional for ¢,= H,(g), the matrix Q,, is arbitrary
apart from the fact that it must be positive definite. We can illustrate
this with the (&) instability (example a) of Section 3, where the relation
is Q,b,=20,; Rec,, which only imposes b, Rec¢,>0, since Q,, and
0, = Q11 + Q% are positive (Q,, is the matrix corresponding to the real
variables, which must be positive definite; see the last paragraph of
Section 1). The same holds for examples b and ¢ of Section 3. In example d,
which is of codimension three, the situation is different: relations (55a)
give again only inequalities between (b,, bs, ¢35, ¢s, Red,, Red,) and
fix (Qy, 0, 03,), but then the four relations (55b) determine
(¢4, ¢4, s, Re d;) in terms of (b,, b,, bg). This is in fact the generic case for
higher codimensions. It should be remarked here that many important
features of the deterministic behavior of the dynamical system §,=H (q)
near the instability can be obtained from the polynomial potential when it
exists.>*!2) In this context we must mention that the existence of a poly-
nomial potential does not exclude the possibility of having limit cycles or
coexisting attractors. A simple example is the dynamical system

F=(u+iQ)z+ (1 +if) z |z]> — (L +id) z |z|* +n'2¢E(r) (60)



Nonequilibrium Potentials near Instabilities 1011

where z(t) is a complex variable, &= ¢, +i&,, with (&;, &,) white noises
with zero mean and correlations {(£(z) £,(1")> = 08, 6(t —t'). The poten-
tial here is

0

and for —1/4<pu <0 one has coexistence of the stable fixed point z=0
with the stable limit cycle |z| = (1/\/5)[1 + (14 4u)"*7"2 The question is
open of what happens when polynomial expansions do not exist, although
a natural conjecture is that chaotic behavior is not compaticle with a poly-
nomial potential. One reason for the failure of a polynomial expansion can
be found in formulas (44) and (48), which exhibit singular denominators.
However, here we have looked for polynomials in a special set of variables
g and this does not exclude good polynomial approximations in other
variables. This is indeed the case for the &2 instability.*”

The techniques preseted here can be used to study spatially extended
systems; however, the appearance of bands of critical modes introduces
new conditions for the existence of polynomial potentials."*) In the case
when the linear part of the field H,(g) is not diagonalizable and presents
Jordan blocks, one has a different situation, which will be discussed else-
where.

GRS TR e (61)
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